Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wolfgang Boomgaarden ${ }^{\text {a* }}$ and Martin Nieger ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ Fachbereich Naturwissenschaftliche Technik, Fachhochschule Oldenburg/Ostfriesland/ Wilhelmshaven, University of Applied Science, Constantiaplatz 4, D-26723 Emden, Germany, and ${ }^{\mathbf{b}}$ Institut für Anorganische Chemie,
Rheinische Friedrich-Wilhelms-Universität
Bonn, Gerhard-Domagk-Straße 1, D-53121
Bonn, Germany

Correspondence e-mail:
boomgaarden@ossi.fho-emden.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.130$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaza[3.3]benzenopyridino[2]phane

The structure of 14,16-bis(ethoxycarbonyl)-2,11-bis(4-tolyl-sulfonyl)-2,11-diaza[3.3](1,3)benzeno(2,6)pyridino[2]phane, $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2}$, has been established by X-ray crystallographic analysis. The compound was used, after further derivatization, for the preparation of nanometre-sized molecular ribbons.

Comment

Building blocks composed of diaza[3.3]metacyclophane units have been used to construct molecules of nanometre size with a ribbon or tube shape (Vögtle et al., 1996). The breadth of these ribbons was further extended using biphenyl units as the building blocks (Boomgaarden et al., 1999). The skeleton of molecular ribbons and tubes can lead, after derivatization with catalytically active groups, to synthetic catalysts with an outer sphere which sterically protects the reaction centre from the movement of the solvent molecules, as in enzymes.

The title compound, (I), crystallizes in the syn conformation (Fig. 1), which is the preferred conformation of diaza[3.3]metacyclophanes. The $\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}$ bridges result in a boatboat conformation. Both aromatic units show little distortion and the aromatic planes are oriented at an angle of about 35° to each other.

(I)

Fig. 2 shows a packing diagram for (I). A weak intermolecular $\mathrm{C} 27-\mathrm{H} 27 A \cdots \mathrm{O} 112^{\mathrm{i}}$ hydrogen bond is observed,

Figure 1
A perspective view of the molecule of (I), showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Accepted 2 March 2004 Online 13 March 2004
and the details of this bond are given in Table 1 [symmetry code: (i) $2-x, 2-y, 1-z]$.

Experimental

The title compound, (I), was synthesized by cyclization of 2,4-bis[(4-tolylsulfonyl)aminomethyl]benzene-1,5-dicarboxylate with 2,6-bis(bromomethyl)pyridine (Boomgaarden, 1998). The crystal used for the present data collection was obtained by slow vapour diffusion of methanol into a solution of (I) in chloroform [$R_{F}=0.18$ (chloroformacetone, 50:1); m.p. 496-498 K]. Spectroscopic analysis, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ, p.p.m.): $1.30\left(t, J=7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$), $2.40(s, 6 \mathrm{H}$, Tos- CH_{3}), $4.28\left(q, J=7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.44\left(s, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.69(s$, $\left.4 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.78(d, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.18(t, J=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.35(d, J=8 \mathrm{~Hz}, 4 \mathrm{H}$, Tos-H), $7.81(d, J=8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Tos}-\mathrm{H}), 7.90(s$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.95(s, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.): $14.28\left(\mathrm{CH}_{3}\right), 21.63\left(\mathrm{Tos}-\mathrm{CH}_{3}\right), 51.93\left(\mathrm{NCH}_{2}\right), 56.50\left(\mathrm{NCH}_{2}\right), 61.49$ $\left(\mathrm{OCH}_{2}\right), 122.71,127.59,128.41,130.11,131.42,135.31,135.62,137.52$, $139.47,143.85,155.24$ ($6 \mathrm{Ar}-\mathrm{CH}+5 \mathrm{Ar}-\mathrm{Cq}$, where Cq is a quaternary C atom), 166.42 (CO); EI-MS, $70 \mathrm{eV}, \mathrm{m} / z$ (\%): 691.1 (29) M^{+}, 646.1 (34) $M-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{+}, 536.2$ (100) $M-\mathrm{Tos}^{+}$; found: $M-\operatorname{Tos}^{+} 536.1856$; M-Tos ${ }^{+}$requires 536.1855; MALDI-TOF (matrix: 9-nitroanthracene) $m / z(\%): 730.4$ (55) $[M+\mathrm{K}]^{+}, 714.4$ (100) $[M+\mathrm{Na}]^{+}, 692(48)[M+\mathrm{H}]^{+}$.

Crystal data

$\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2}$
$M_{r}=691.80$
Triclinic, $P \overline{1}$
$a=9.504$ (1) A
$b=11.359$ (1) \AA
$c=17.548$ (1) \AA
$\alpha=104.69(1)^{\circ}$
$\beta=97.85$ (1) ${ }^{\circ}$
$\gamma=106.77(1)^{\circ}$
$V=1709.0(3) \AA^{3}$

Data collection

Nonius MACH3 diffractometer $2 \theta / \omega$ scans
Absorption correction: ψ scan (SHELXTL-NT; Sheldrick, 2001)
$T_{\text {min }}=0.685, T_{\text {max }}=0.829$
8256 measured reflections
6149 independent reflections
5009 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.130$
$S=1.03$
6149 reflections
435 parameters
H-atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.344 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=30-44^{\circ} \\
& \mu=1.88 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.45 \times 0.23 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.056 \\
& \theta_{\max }=67.9^{\circ} \\
& h=-11 \rightarrow 10 \\
& k=-3 \rightarrow 12 \\
& l=-21 \rightarrow 21 \\
& 2 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \text { intensity variation: } \pm 4 \% \\
& \\
& \\
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0651 P)^{2}\right. \\
\quad+0.6802 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

Figure 2
The molecular packing of (I) in the crystal structure. Hydrogen bonds are shown as dashed lines.

Table 1
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 27-\mathrm{H} 27 \cdots \mathrm{O}_{1} 1^{\mathrm{i}}$	0.93	2.41	$3.276(3)$	155

Symmetry code: (i) $2-x, 2-y, 1-z$.
Data collection: CAD-4-PC (Nonius, 1989); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Sheldrick, 2001); software used to prepare material for publication: SHELXL97.

References

Boomgaarden, W. (1998). Dissertation. Universität Bonn, Germany.
Boomgaarden, W., Vögtle, F., Nieger, M. \& Hupfer, H. (1999). Chem. Eur. J. 1, 345-355.
Harms, K. \& Wocadlo, S. (1995). XCAD-4. University of Marburg, Germany.
Nonius (1989). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL-NT. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Vögtle, F., Breidenbach, S. \& Ohren, S. (1996). Chem. Eur. J. 2, 832-837.

